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Abstract: By combining the agility of legged locomotion with the capabilities
of manipulation, loco-manipulation platforms have the potential to perform com-
plex tasks in real-world applications. To this end, state-of-the-art quadrupeds with
manipulators, such as the Boston Dynamics Spot, have emerged to provide a ca-
pable and robust platform. However, the complexity of loco-manipulation con-
trol, as well as the black-box nature of commercial platforms, pose challenges
for deriving accurate dynamics models and robust control policies. To address
these challenges, we turn to model-based reinforcement learning (RL). We de-
velop a hand-crafted kinematic model of a quadruped-with-arm platform which –
employing recent advances in Bayesian Neural Network (BNN)–based learning –
we use as a physical prior to efficiently learn an accurate dynamics model from
limited data. We then leverage our learned model to derive control policies for
loco-manipulation via RL. We demonstrate the effectiveness of our approach on
state-of-the-art hardware using the Boston Dynamics Spot, accurately performing
dynamic end-effector trajectory tracking even in low data regimes. Project website
and videos: sites.google.com/view/learning-more-with-less.
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1 Introduction

Legged robots have demonstrated impressive capabilities in navigating complex terrains, offering
agility and adaptability as a result of continuous research efforts [1, 2, 3, 4, 5, 6]. However, while
many systems excel at locomotion, their ability to interact with their environment remains limited.
The integration of a manipulator onto a legged platform, i.e., legged loco-manipulation, holds the
potential to bridge this gap. This combination enables a robot to both navigate challenging terrain
and perform advanced manipulation tasks such as opening doors [7], grasping objects [8, 9, 10],
or possibly even interacting with objects in a dynamic setting such as catching or throwing a ball.
State-of-the-art commercial robots such as the Boston Dynamics Spot quadruped, now equipped
with an arm, have emerged to provide a capable and robust platform to perform such tasks [8].

However, their proprietary, black-box nature complicates the development of an accurate dynam-
ics model necessary to derive new control policies [8, 11]. Simplified or hand-crafted modeling
approaches alone often fall short in face of unknown internal controller behavior and complex dy-
namics, while purely model-free learning can demand large amounts of real-world data. Further,
realizing robust loco-manipulation introduces new challenges. The coupling between a dynamic,
moving base and a mounted manipulator creates complex, high-dimensional dynamics that are dif-
ficult to capture and control using classical methods [10].
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Figure 1: Boston Dynamics Spot in our experiments tracking an ellipsoidal reference trajectory.

To address both the challenge of learning an accurate system model, as well as performing robust
loco-manipulation control, we turn to model-based reinforcement learning (RL) [12]. Leveraging
recent progress in dynamics learning with Bayesian Neural Networks (BNNs), specifically SIM-
FSVGD [13], and by developing a hand-crafted kinematic model of our platform, we efficiently
learn a dynamics model of Spot with a mounted arm from real-world data. We use SIM-FSVGD
to incorporate our kinematic model as a low-fidelity physical prior during BNN-learning, allowing
us to learn an accurate model at low data requirements. Inspired by the recent success of RL-based
control for loco-manipulation [14, 15, 10, 16], we then leverage our learned dynamics model to
derive control policies via RL that enable Spot to accurately perform loco-manipulation tasks [17].

In summary, our main contributions are: (i) we allow for learning an accurate dynamics model
for a complex, black-box quadruped-with-arm platform from limited real-world data by developing
a hand-crafted kinematic model and employing it as a physical prior for efficient BNN-learning
leveraging SIM-FSVGD, (ii) we use the learned dynamics model to derive control policies for loco-
manipulation via RL, and (iii) we demonstrate the effectiveness of our approach on the Boston
Dynamics Spot with a manipulator, achieving improved dynamic end-effector trajectory tracking
accuracy even at reduced data requirements compared to baseline methods.

2 Related Work

Loco-Manipulation Control Combining legged locomotion and manipulation to achieve dy-
namic mobile manipulation is an increasingly relevant problem that has been the focus of a consid-
erable amount of research. We can generally make a distinction between platforms that use a robot’s
body [18, 19] or legs [14, 16, 20] for manipulation, those that apply a hybrid approach [21, 22, 23],
and those that use a dedicated arm [15, 10, 8, 9, 7, 24]. Especially this last category allows for
combining the advances in legged locomotion with the benefits of a manipulator, enabling advanced
tasks such as grasping stationary items [10, 8, 9], opening doors [7], or wiping a whiteboard [10].

However, due to the platform’s complexity, loco-manipulation control is inherently a challenging,
high-dimensional, and non-smooth control problem [15]. This calls for pursuing a closed-loop ap-
proach to allow for more robust and adaptive control instead of previous feed-forward trajectory
optimization methods such as in [8]. To this end, RL has emerged as a powerful approach that en-
ables robust legged locomotion in general [6, 25, 26, 27, 28, 29] and shows impressive performance
in the setting of loco-manipulation [14, 15, 10, 16, 20, 19]. While these prior works mainly focus on
using model-free RL, recently model-based RL has shown potential for more sample-efficient robot
learning across distinct locomotion and manipulation tasks [30, 31]. Motivated by this success, we
leverage recent advances in model-based RL and dynamics learning, primarily SIM-FSVGD [13], to
achieve accurate and robust loco-manipulation control, as well as better generalization to new tasks,
even when data is scarce and a simulation environment is not available.

Modeling Robot Dynamics Although state-of-the-art quadrupeds like the Boston Dynamics Spot
are very capable platforms, their usage in a research setting yields certain challenges. As a com-
mercial product, knowledge of their built-in controller remains proprietary, and low-level control
access is often restricted. However, an accurate system model is necessary to pursue a model-based
or learning-based control method. To this end, [8] uses a simple parametrized dynamics model and
parameter identification to simulate the platform’s behavior. Yet, accurately modeling the dynam-
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ics of a complex system such as a quadruped with an attached arm is a challenging, dynamic, and
high-DoF problem [10, 17]. In [8], Spot fails to achieve the desired task in certain cases due to the
model’s inability to fully capture the robot’s complex internal behavior. Especially the wrench and
disturbances introduced by the arm are difficult to model accurately.

In the face of these challenges, we pursue a more sophisticated approach. By developing a hand-
crafted kinematic model of our system and employing methods for BNN-learning with physical pri-
ors, we incorporate domain knowledge into our learning pipeline to accurately capture the complex
dynamics of our system in a sample-efficient manner. To this end, we leverage SIM-FSVGD [13],
a BNN-based method to learn accurate dynamics from limited data by incorporating our kinematic
model as a low-fidelity physical prior during training. Further, by using Bayesian Neural Networks,
we tend to avoid the same overfitting behavior as non-bayesian methods [13]. This combined ap-
proach allows us to learn an accurate model of our system with improved sim-to-real performance,
even in low-data regimes, which we can then leverage to derive robust control policies via RL.

3 Preliminaries

3.1 Learning Robot Dynamics

Learning with NNs We omit the preliminaries on (model-based) RL here and provide them in
Appendix A. In a robotics context, we want to use model-based RL to derive control policies π
that allow us to perform dynamic tasks, such as loco-manipulation. However, since we often lack a
model of our system in practice, we first need to learn an accurate dynamics model of our robot. For
this purpose, we consider a time-discretized dynamical system described as

st+1 = f(st,ut), (1)

where st ∈ Rns is the state of the system at time t, ut ∈ Rnu is the control input, and f(st,ut)

is the unknown dynamics of the system. We now aim to learn a model f̂(st,ut) that approximates
the true dynamics of the system from a dataset of state-action-state transitions (st,ut, st+1). To this
end, we can state our problem as learning an unknown dynamics function f̂ : X → Y from a dataset
D = (XD,yD) of size N , where our training inputs consist of the state-action pairs XD = {xj}Nj=1

and the target outputs yD = {yj}Nj=1 are the measured noisy observations of our dynamics, i.e.,
yj = f(xj) + ϵj . We assume the noise ϵ to be i.i.d. and Gaussian with variance σ2. Using a Neural
Network (NN) to model f̂ , we can then formulate our learning problem as fitting a NN model
hθ : X → Y with network weights θ from D. We can use hθ to define the conditional predictive
distribution of our observations as p(y|x, θ) = N (y|hθ(x), σ

2).

Learning with BNNs This can be extended to learning a BNN by considering not only a sin-
gle set of weights but a distribution over θ. BNNs then infer a posterior distribution over the
weights p(θ|XD,yD) ∝ p(yD|XD, θ)p(θ) given the data-likelihood p(yD|XD, θ) and a known
prior distribution p(θ). Under the assumption that, given θ, each data point is conditionally inde-
pendent, the likelihood can be factorized as p(yD|XD, θ) =

∏N
j=1 p(yj |xj , θ). Finally, the pre-

dictive distribution for a new input x∗ can be defined by marginalizing over the weights θ [13] as
p(y∗|x∗,XD,yD) =

∫
p(y∗|x∗, θ)p(θ|XD,yD)dθ = Eθ[p(y

∗|x∗, θ)|XD,yD].

3.2 Function Space Inference and Functional Priors

FSVGD Performing posterior inference with BNNs, however, is challenging. Both the high-
dimensionality of the weight space, as well as the over-parametrization of the mapping between
θ and a likelihood function p(yD|XD, θ) render inference difficult [13, 32]. The functional Stein
Variational Gradient Descent (FSVGD) method [32] addresses these issues by performing BNN in-
ference in the space of regression functions h : X → Y , rather than in the weight space of θ. In
function space, the posterior is formulated as p(h|XD,yD) ∝ p(yD|XD, h)p(h), where p(h) is a
stochastic prior distribution over h : X → Y with index space X and value space Y [33]. This
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allows for the functional inference to be restated in a tractable form by using finite measurement
sets X := [x1, ...,xk] ∈ X k, k ∈ N that allow for characterizing a stochastic process by marginals
of function values ρ(hX) := ρ(h(x1), ..., h(xk)) and subsequently stating the functional posterior
as p(hX|X,XD,yD) ∝ p(yD|XD,hX)p(hX), for the measurement sets X [34]. FSVGD approx-
imates this posterior by maintaining L parameter particles θ1, ..., θL and iteratively re-sampling X
as a random subset of X with X ∼ µ where µ is an arbitrary distribution supported on X . FSVGD
then updates the particles using

θl = θl − γJlul. (2)
Here Jl = (∇θlh

X
θl
)⊤ is the NN Jacobian, ul =

1
L

∑L
i=1 Kli∇hx

θi
ln p(hx

θl
|X,XD,yD)+∇hx

θl
Kli

is the SVGD update [35] in function space and K = [k(hx
θl
,hx

θi
)]li is the gram matrix, based on a

kernel function k, between the measurement points and the function values [13, 32].

SIM-FSVGD The SIM-FSVGD method [13] extends FSVGD by using an informed functional
prior p(h) for a function h : X → Y that incorporates both a domain-model process and a sim-to-real
prior. SIM-FSVGD factorizes the prior over the output dimensions as p(h) =

∏ns

i=1 p(hi), treating
each hi : X → R as an independent function. The domain-model process allows for integrating prior
domain knowledge of the system via a low-fidelity simulation model g(x, ϕ), e.g., derived from first-
principle physics, where ϕ are the model parameters. As the exact model parameters are unknown,
we can randomly sample them from a plausible range as ϕ ∼ p(ϕ) and create distinct simulation
models per parameter set, implicitly creating a stochastic process of functions. The sim-to-real
prior addresses the gap between a simulation model and the actual system dynamics f(x) by adding
a sim-to-real gap process as a Gaussian Process (GP) p(h̃i) per output dimension i = 1, ..., ns.
SIM-FSVGD uses a zero-mean GP with isotropic kernel k(x,x′) = ν2ρ(||x − x′||/l), where the
lengthscale l and variance ν2 are hyperparameters that allow us to incorporate our assumptions about
the actual sim-to-real gap.

The combined stochastic process prior p(h) is then defined implicitly via the marginal distributions
implied by independently sampling conditional random vectors from each process and adding them:
hx
i = [gi(x1, ϕ), . . . , gi(xk, ϕ)]

⊤
+ h̃x

i , where ϕ ∼ p(ϕ) and h̃X
i ∼ N (h̃X

i |0,K) [13]. Lastly, SIM-
FSVGD relies on the same update rule as in Equation (2) to update the particles θl. The stochastic
process prior score ∇hX ln p(hX) =

∑ns

i ∇hX
i
ln p(hX

i ) is approximated using a Gaussian ap-
proximation of the prior process, i.e., p(hX

i ) ∼ N (µX
i ,ΣX

i ). The approximation is constructed by
sampling the measurement set X from a distribution µ supported on X , sampling m = 1, ..., P
vectors of function values hX

i,m ∼ p(hX
i ) and computing their mean µX

i and covariance ΣX
i .

4 Learning Control Policies for Loco-Manipulation

Our work focuses on learning an accurate dynamics model of our robot from limited data to sub-
sequently derive control policies for loco-manipulation tasks via RL. To this end, we develop a
hand-crafted kinematic model f̂kin of our quadruped-with-arm platform. We then use f̂kin as a
physical prior and leverage SIM-FSVGD to efficiently learn a model f̂ from data that approximates
our platform’s true dynamics f . Subsequently, we develop a reward structure r and use our learned
model f̂ to derive a control policy π for end-effector trajectory tracking using Soft-Actor-Critic
(SAC) [36]. In this section, we present our control approach, develop our kinematic model f̂kin,
show how we use it and SIM-FSVGD to learn f̂ , and finally discuss our policy learning process.

4.1 Robot State and Control Input

We define our base state as the position, orientation and velocity of the robot’s base on a 2D plane
in world frame W , i.e., pbase = [xbase, ybase, θbase] and vbase = [vbase

x , vbase
y , ωbase]. Here θbase is

the yaw angle of the robot’s base, and ωbase is the corresponding angular velocity. For the end-
effector, we represent the state using the 3D position and velocity in world frame W , i.e., pee =
[xee, yee, zee] and vee = [vee

x , v
ee
y , v

ee
z ]. Stacking the individual components, our state vector becomes

s =
[
pbase,vbase,pee,vee

]
∈ R12. We provide an overview of the respective frames in Appendix B.
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To control our robot, we use velocity commands. For the base of the robot, we command the vbase
x ,

vbase
y and ωbase velocities on a 2D plane, yielding the control input ubase = [ubase

vx , ubase
vy , ubase

ω ]. We
express the velocities in the body frame B and apply them at the robot’s center of mass. For the end-
effector, we command the vee

x , vee
y and vee

z velocities in 3D, i.e., uee = [uee
vx, u

ee
vy, u

ee
vz]. Again, the

velocities are expressed in the body frame B and are applied at the center of the end-effector frame
H , which sits at the center of the gripper. Our control input is then given as u =

[
ubase,uee

]
∈ R6.

4.2 Developing a Dynamics Model

We model the dynamics of our robot as the time discretized system st+1 = f̂(st,ut), where st ∈
Rns is the state at time t with ns = 12, ut ∈ Rnu is the control input with nu = 6, and f̂(st,ut)
are the approximated dynamics. We now develop our dynamics model in two steps. First, we
create a hand-crafted kinematic model f̂kin of our robot derived from first principles using domain
knowledge. In a second step, we use our model as a physical prior, i.e., to create the domain-model
process within SIM-FSVGD, and efficiently learn a dynamics model f̂ from real-world data.

Kinematic Model We derive our kinematic model from first principles and use the Forward Euler
Method with time step ∆t to propagate our state. To better capture the complex dynamics of our
platform, we enhance our equations with the parameters α ∈ R6×1, β ∈ R12×1, and γ ∈ R6×1.
As our actions ut are given in the body frame B and our state st is in the world frame W , we first
convert our inputs to uW

t using the base’s current yaw angle θbase
t , i.e.,

uW
t =

[
R(θbase

t )ubase,B
t

R(θbase
t )uee,B

t

]
, where R(θ) :=

[
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]
. (3)

We can then derive the update equations for the base velocity vbase and position pbase, using Abase :=
diag(α1:3) and Γbase := diag(γ1:3), as

vbase
t+1 = Abase v

base
t + (I3 −Abase )u

base,W
t + β1:3,

pbase
t+1 = pbase

t +∆tΓbase v
base
t+1 + β4:6.

(4)

For the end-effector updates, we need to consider the base’s movements in addition to the
end-effector velocity commands. Incorporating the horizontal linear velocities of the base
vbase
x,t and vbase

y,t follows simply via addition. However, to consider the base’s angular ve-
locity ωbase

t in the end-effector’s movement, we first need to calculate the induced veloc-
ity on the end-effector as vind =

[
−ωbase

t+1 · d · sin(ϕ), ωbase
t+1 · d · cos(ϕ), 0

]
. Here d =√(

xee
t − xbase

t

)2
+
(
yee
t − ybase

t

)2
is the distance between the base’s rotational axis and the end-

effector, and ϕ = arctan2
(
yee
t − ybase

t , xee
t − xbase

t

)
is the angle of the induced velocity vector in

the global frame W . We can then update the end-effector velocity vee and position pee, again using
Aee := diag(α4:6), Γee := diag(γ4:6) and Dee := diag(1, 1, 0), as

vee
t+1 = Aee v

ee
t + (I3 −Aee)u

ee,W
t + β7:9 +Dee v

base
t+1 + vind,

pee
t+1 = pee

t +∆tΓee v
ee
t+1 + β10:12.

(5)

BNN Model To learn a BNN model of our robot from data, we leverage SIM-FSVGD [13], as
detailed in section 3. SIM-FSVGD allows us to incorporate our prior knowledge by using our kine-
matic model f̂kin to create the domain-model process, where our system parameters ϕ are the set of
parameters used in our update equations, i.e., ϕ = [α, β, γ] ∈ R24×1. Note that, as SIM-FSVGD
randomly samples parameter sets as ϕ ∼ p(ϕ) to implicitly create a stochastic process of functions,
we do not fit the parameters of our kinematic model from data beforehand. However, we use real-
world data to heuristically estimate a plausible range for our parameters. We then use a similar
sim-to-real prior as [13] and learn our dynamics model f̂ from real-world data.
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4.3 Policy Learning

Having learned a model of our system, we now turn to deriving loco-manipulation control poli-
cies via RL. We employ SAC [36] and condition our policy on end-effector goal positions gee =
[xW

g , yWg , zWg ]. To this end, we uniformly sample an initial state s0 and end-effector goal position
gee at each episode and construct a goal conditioned state vector scond = [s,gee] ∈ R15×1, while
our action space remains our control input u ∈ R6×1. To guide our policy learning, we design
a reward structure r(scond,u) that encourages the end-effector to smoothly move towards the goal
while keeping the end-effector within a physically valid range, consisting of a state-goal distance
reward rstate, an end-effector to base distance reward ree-base and a regularizing action reward raction.

rstate To drive the end-effector towards a goal position, we assign a full reward when the distance
dee-goal = ∥pee − gee∥ between the end-effector position pee and the goal position gee lies within
(0, b). Outside these bounds, we smoothly decrease the reward using a long-tailed sigmoid function
σm,a(x)

1, with a defined value a at margin m, creating a smooth reward with infinite-support and
range [0, 1]: rstate(scond) = 1{ dee-goal≤b } + 1{ dee-goal>b } σm,a(dee-goal − b) .

ree-base The second component encourages the distance dee-base = ∥pee − pbase∥ between the end-
effector position pee and the base position pbase to stay within a physically valid range given by the
arm’s length larm. To achieve this, we use the same approach as above with the bounds (0, larm),
resulting in: ree-base

(
scond

)
= 1{ dee-base≤larm } + 1{ dee-base>larm } σm,a

(
dee-base − larm

)
.

raction Lastly, we include an action cost term that penalizes inefficient policies. However, instead
of weighting each control input equally, we encourage the use of end-effector movements over body
movements by assigning a higher weight λbase to the base actions than the end-effector actions
weight λee: raction(u) = −

(
λbase∥ubase∥2 + λee∥uee∥2

)
.

We calculate our final reward as a weighted sum of the three components, i.e., r(scond,u) =
w1rstate(scond) + w2ree-base(scond) + w3raction(u), where w1, w2, and w3 are tuned heuristically.

5 Experimental Results

In this section, we present our experiments and results, evaluating the effectiveness of our
model-based RL approach at learning dynamic loco-manipulation control policies for a complex
quadruped-with-arm platform in a data-efficient manner. To this end, we compare the performance
of the dynamics model learned using SIM-FSVGD with our kinematic model as a physical prior,
which we simply label SIM-FSVGD, to two baseline models, SIM-MODEL and FSVGD, across
different training set sizes. We evaluate both the sim-to-real transfer performance of the models, as
well as the real-world loco-manipulation performance of the control policies derived from them.

In the following, we describe our baseline models, our experiment platform (the Boston Dynamics
Spot), as well as our data collection and data processing steps. Subsequently, we introduce our three
experiments: Model Validation and our hardware experiments Ellipse Tracking and Helix Tracking.
Finally, we present the results of our evaluation.

5.1 Baseline Models

We consider two baseline models, SIM-MODEL and FSVGD [32]. SIM-MODEL is our hand-
crafted kinematic model with the parameters α, β, and γ fitted from real-world data using the opti-
mizer Adam [38]. Notably, we use an unfitted version of the same kinematic model as a low-fidelity
physical prior in the SIM-FSVGD approach. FSVGD is a BNN-based method widely applied in
deep learning and, contrary to SIM-FSVGD, FSVGD does not use an informed prior.

1We borrow the definition from [37], i.e., σm,a(x) =
((

xm−1
√
a−1 − 1

)2
+ 1

)−1
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Figure 2: (a) We compare the dynamics models’ sim-to-real transfer performance across increasing
training set sizes by evaluating their NLL scores. SIM-FSVGD consistently outperforms the FSVGD
baseline (especially in low data regimes) and the SIM-MODEL baseline from N ≥ 2000 onwards.
(b) We compare the mean error our policies achieve on the ellipsoidal goal trajectory across different
training set sizes. The policies learned using the SIM-FSVGD model outperform those learned using
our baseline models across all set sizes and especially at smaller training set sizes (N < 3000).
(c) Similarly, for the helix trajectory, the policies learned using the SIM-FSVGD model outperform
those learned using FSVGD and our kinematic SIM-MODEL across all training set sizes.
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Figure 3: We plot the realized helix trajectories for all sample sizes and seeds. The policies learned
using the SIM-FSVGD model follow the reference trajectory more closely than both baselines. Note
that trajectories on course for collision were stopped early and we then plot only a truncated version.

5.2 Experiment Setup

Boston Dynamics Spot Quadruped For our experiments, we use the Boston Dynamics Spot, a
state-of-the-art quadruped robot equipped with an arm for manipulation. We pass our control input
and collect state measurements over Wi-Fi from a PC via Spot’s high-level Python SDK. Spot relies
on an unkown state estimator that fuses data from onboard sensors and cameras, and an unkown
onboard controller that executes our commands. Appendix B shows Spot and its reference frames.

Data Collection and Processing We collect our training data by interacting with Spot, manually
controlling its base vbase velocities using an Xbox controller and its end-effector vee velocities using
a 3D Space Mouse. We send commands and collect data at 15Hz. We collect transitions consisting
of the current state st, the commanded action ut, and the next state st+1. However, instead of using
our dynamics model to predict the next system state directly, we predict the change in the state.
To this end, we adapt our dataset by creating a new set where our input remains the state action
pair xt = [st,ut] but our target output becomes the state difference yt = [st+1 − st]. Addition-
ally, we encode the base’s yaw angle θbase as (sin(θbase), cos(θbase)) to avoid discontinuities and
provide a representation more suitable for NNs [39]. Further, our control setup has a delay (ca.
two timesteps, i.e., 133ms) between the command and execution of an action. To compensate for
this, we append the previous two actions [ut−2,ut−1] to the state st. Our model input becomes
xt = [st,ut−2,ut−1,ut] ∈ R31×1 while our target output is yt = [st+1 − st] ∈ R13×1. We then
create a training set for supervised learning by sampling i.i.d. from the collected transitions.
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5.3 Results

Model Validation Spot’s unknown internal controller behavior, along with the wrench and distur-
bances introduced by its arm, give rise to dynamics that are difficult to capture and model accurately.
To evaluate how well our dynamics learning approach bridges this sim-to-real gap, we train the SIM-
FSVGD and FSVGD models on a dataset sampled i.i.d. from our collected transitions and use the
same dataset to fit the SIM-MODEL parameters. We evaluate their sim-to-real performance using
the negative log-likelihood (NLL) scores they achieve on a real-world test set and compare our SIM-
FSVGD model’s performance to the baseline models across increasing training set sizes. We repeat
our experiment with three random seeds and average the results.

We observe that SIM-FSVGD outperforms FSVGD across all training set sizes (Figure 2). Espe-
cially in low data regimes, leveraging our physical prior via SIM-FSVGD helps us achieve NLL
scores significantly lower than FSVGD. At N = 1000, SIM-FSVGD performs similarly to our
hand-crafted kinematic SIM-MODEL and surpasses it beyond N ≥ 2000. While the BNN-based
models improve with growing training set sizes, our kinematic SIM-MODEL’s NLL scores remain
consistent throughout, which is expected as we fit 24 parameters from an abundant amount of data.

Shape Tracking We now leverage our learned dynamics to derive loco-manipulation control poli-
cies via RL. To evaluate the effectiveness of our approach on hardware, we use the learned policies
to dynamically track two shapes with Spot’s end-effector: an ellipse and a helix. We show Spot
in action in Figure 1. We compare the performance of the policies learned using our SIM-FSVGD
dynamics model to the baselines across increasing training set sizes, repeating the experiment with
three random seeds. We evaluate the performance via the mean error of the realized trajectories
versus the reference trajectory: 1

T

∑T
t=1 ||pee

t − gee
t ||2, where gee

t is the end-effector goal at time t.

The policies learned using our SIM-FSVGD model outperform both baselines across all training
set sizes (Figure 2). Especially in low-data regimes (N ≤ 2000), leveraging our physical prior
via SIM-FSVGD allows us to still learn an accurate dynamics model, enabling us to derive control
policies that achieve significantly lower errors than both the FSVGD and the SIM-MODEL baselines
(147% and 153% higher at N = 2000 for the ellipse, respectively). While the performance of the
policies learned using the FSVGD model improves with increasing training set sizes (as the model
accuracy itself improves), even at N = 5000, their error is still larger than that of the policies learned
using the SIM-FSVGD model at N = 1000. The plotted trajectories underline our results (Figure 3
and Appendix C); the policies learned using the SIM-FSVGD model follow the reference trajectory
more closely than both baseline methods. These hardware results demonstrate the effectiveness of
our approach at efficiently learning loco-manipulation control policies for a complex platform.

6 Conclusion

In this work, we address the problem of learning policies for loco-manipulation control on a
quadruped platform with a manipulator. We develop a hand-crafted kinematic model which, by
employing advances in dynamics learning with BNNs (i.e., SIM-FSVGD [13]), we leverage as a
physical prior to efficiently learn a dynamics model of our system from limited data. In our hard-
ware experiments, we use our learned dynamics model to derive loco-manipulation policies via RL,
achieving improved dynamic end-effector trajectory tracking accuracy even at reduced data require-
ments compared to baseline methods. Our results demonstrate the effectiveness of our approach on a
complex, commercial loco-manipulation system with a proprietary, black-box nature, such as Spot.

Limitations Our approach shows certain shortcomings that could be addressed in future work.
Although our tracked trajectories cover 3D space, they do not fully exploit the dynamic capabilities
of the platform. Future work could investigate trajectories that require even faster motion of the
base, such as catching a ball, or longer trajectories. Further, our current state and action space do not
yet include the end-effector’s orientation. Exploring how to incorporate these additional degrees of
freedom into our model and control policies could be beneficial for performing more complex tasks.
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A Preliminaries on Model-Based Reinforcement Learning

In this section, we provide a brief introduction to model-based RL in the context of robot control.
In an RL setting, our problem of learning control policies can be formulated as a Markov Decision
Process (MDP) defined by the tuple (S,A, f, r, γ, s0), where S is the state space, A the action
space, f : S × A → S is the transition model or dynamics of the system, r : S × A → R the
reward function, γ ∈ (0, 1) the discount factor, and s0 the initial state distribution. The goal of
an RL approach is to then find an optimal policy π∗ that maximizes an agent’s performance in this
setting. We can define the performance of a policy π over a fixed horizon H subject to the dynamics
st+1 ∼ f(st,ut) as the expected sum of discounted rewards over the horizon as

J(π, f) = Eut∼π

[
H∑
t=0

γtr(st,ut) | s0

]
. (6)

Our desired optimal policy π∗ is then the result of the optimization problem

π∗ = argmax
π

J(π, f). (7)

In practice, however, we often lack a model of the system dynamics f . Consequently, in model-based
RL, we first learn an approximate model f̂ of the dynamics from real-world data and then leverage
this learned model to derive control policies that maximize our objective using an RL scheme.

B Experiment Platform and Setup

In Figure 4, we show Boston Dynamics Spot following an ellipsoidal reference trajectory in our
experiments, as well as an overview of the platform’s geometry and its reference frames.

(a)

(b)

Figure 4: (a) Spot following an ellipsoidal reference trajectory, and (b) the platform with the defined
reference frames: the end-effector frame H , the body frame B, and the world frame W .

C Shape Tracking Experiments

In Figure 5, we provide supplementary plots that show the reference and realized trajectories for the
ellipse shape tracking experiments for all polices, sample sizes and seeds.

D Model and Policy Learning Hyperparameters

We provide the hyperparameters we used during model and policy learning in Table 1.
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Figure 5: We plot the realized ellipse trajectories for all sample sizes and seeds. The policies learned
using the SIM-FSVGD model follow the reference trajectory more closely than both baselines. Note
that trajectories on course for collision were stopped early, in which case we plot only a truncated
version. Also, the initial position of the end-effector and the first goal are not equivalent, resulting
in the lines connecting the center to the first goal.
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General BNN Hyperparameters
Particles 5
Batch size 64
Epochs 100
Max. training steps 200’000
Learning rate 1e-3
Weight decay 1e-3
Hidden layer sizes 64, 64, 64
Hidden activation function LeakyReLU
Learn likelihood std Yes
Likelihood exponent 1.0
Predict state difference Yes

FSVGD Hyperparameters
Bandwidth SVGD 5.0
Lengthscale GP prior 0.2
Outputscale GP prior 1.0
Measurement points 16

SIM-FSVGD Hyperparameters
Bandwidth SVGD 5.0
Lengthscale physical prior 1.0
Outputscale physical prior 0.2
Measurement points 64
Function samples 256
Score estimator GP

SIM-MODEL Hyperparameters
Optimizer Adam [38]
Training steps 10’000
Learning rate 1e-3
Weight decay 1e-3

SAC Hyperparameters
Environment steps 2’500’000
Episode length 120
Action repeat 1
Environment steps between updates 16
Environments 64
Evaluation environments 128
Learning rate α 1e-4
Learning rate policy 1e-4
Learning rate q 1e-4
Weight decay α 0.0
Weight decay policy 0.0
Weight decay q 0.0
Max. gradient norm 100
Discounting 0.99
Batch size 64
Evaluations 20
Reward scaling 1.0
τ 0.005
Min. replay size 2048
Max. replay size 50’000
Gradient updates per step 1024
Policy hidden layer 64, 64
Policy activation function Swish
Critic hidden layer 64, 64
Critic activation function Swish

Reward Hyperparameters
rstate bound b 0.15
rstate margin m 1.5
rstate value a at margin 0.1
ree-base bound larm 1.3
ree-base margin m 1.3
ree-base value a at margin 0.1
raction base action weight λbase 2.0
raction end-effector action weight λee 0.5
rstate weight w1 1.5
ree-base weight w2 0.01
raction weight w3 0.1

Table 1: Hyperparameters for model and policy learning used in our experiments.
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